Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 225
Filter
1.
Viruses ; 15(5)2023 05 17.
Article in English | MEDLINE | ID: covidwho-20240301

ABSTRACT

T-cell recognition of antigen epitopes is a crucial step for the induction of adaptive immune responses, and the identification of such T-cell epitopes is, therefore, important for understanding diverse immune responses and controlling T-cell immunity. A number of bioinformatic tools exist that predict T-cell epitopes; however, many of these methods highly rely on evaluating conventional peptide presentation by major histocompatibility complex (MHC) molecules, but they ignore epitope sequences recognized by T-cell receptor (TCR). Immunogenic determinant idiotopes are present on the variable regions of immunoglobulin molecules expressed on and secreted by B-cells. In idiotope-driven T-cell/B-cell collaboration, B-cells present the idiotopes on MHC molecules for recognition by idiotope-specific T-cells. According to the idiotype network theory formulated by Niels Jerne, such idiotopes found on anti-idiotypic antibodies exhibit molecular mimicry of antigens. Here, by combining these concepts and defining the patterns of TCR-recognized epitope motifs (TREMs), we developed a T-cell epitope prediction method that identifies T-cell epitopes derived from antigen proteins by analyzing B-cell receptor (BCR) sequences. This method allowed us to identify T-cell epitopes that contain the same TREM patterns between BCR and viral antigen sequences in two different infectious diseases caused by dengue virus and SARS-CoV-2 infection. The identified epitopes were among the T-cell epitopes detected in previous studies, and T-cell stimulatory immunogenicity was confirmed. Thus, our data support this method as a powerful tool for the discovery of T-cell epitopes from BCR sequences.


Subject(s)
COVID-19 , T-Lymphocytes , Humans , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , SARS-CoV-2 , Receptors, Antigen, T-Cell , Receptors, Antigen, B-Cell
2.
Front Cell Infect Microbiol ; 13: 1134802, 2023.
Article in English | MEDLINE | ID: covidwho-20239332

ABSTRACT

There has been progressive improvement in immunoinformatics approaches for epitope-based peptide design. Computational-based immune-informatics approaches were applied to identify the epitopes of SARS-CoV-2 to develop vaccines. The accessibility of the SARS-CoV-2 protein surface was analyzed, and hexa-peptide sequences (KTPKYK) were observed having a maximum score of 8.254, located between amino acids 97 and 102, whereas the FSVLAC at amino acids 112 to 117 showed the lowest score of 0.114. The surface flexibility of the target protein ranged from 0.864 to 1.099 having amino acid ranges of 159 to 165 and 118 to 124, respectively, harboring the FCYMHHM and YNGSPSG hepta-peptide sequences. The surface flexibility was predicted, and a 0.864 score was observed from amino acids 159 to 165 with the hepta-peptide (FCYMHHM) sequence. Moreover, the highest score of 1.099 was observed between amino acids 118 and 124 against YNGSPSG. B-cell epitopes and cytotoxic T-lymphocyte (CTL) epitopes were also identified against SARS-CoV-2. In molecular docking analyses, -0.54 to -26.21 kcal/mol global energy was observed against the selected CTL epitopes, exhibiting binding solid energies of -3.33 to -26.36 kcal/mol. Based on optimization, eight epitopes (SEDMLNPNY, GSVGFNIDY, LLEDEFTPF, DYDCVSFCY, GTDLEGNFY, QTFSVLACY, TVNVLAWLY, and TANPKTPKY) showed reliable findings. The study calculated the associated HLA alleles with MHC-I and MHC-II and found that MHC-I epitopes had higher population coverage (0.9019% and 0.5639%) than MHC-II epitopes, which ranged from 58.49% to 34.71% in Italy and China, respectively. The CTL epitopes were docked with antigenic sites and analyzed with MHC-I HLA protein. In addition, virtual screening was conducted using the ZINC database library, which contained 3,447 compounds. The 10 top-ranked scrutinized molecules (ZINC222731806, ZINC077293241, ZINC014880001, ZINC003830427, ZINC030731133, ZINC003932831, ZINC003816514, ZINC004245650, ZINC000057255, and ZINC011592639) exhibited the least binding energy (-8.8 to -7.5 kcal/mol). The molecular dynamics (MD) and immune simulation data suggest that these epitopes could be used to design an effective SARS-CoV-2 vaccine in the form of a peptide-based vaccine. Our identified CTL epitopes have the potential to inhibit SARS-CoV-2 replication.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2 , COVID-19 Vaccines , COVID-19/prevention & control , Molecular Docking Simulation , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Peptides , Vaccines, Subunit , Amino Acids , Endopeptidases , Computational Biology
3.
Front Immunol ; 14: 1192395, 2023.
Article in English | MEDLINE | ID: covidwho-20238902

ABSTRACT

Background: Understanding the humoral immune response towards viral infection and vaccination is instrumental in developing therapeutic tools to fight and restrict the viral spread of global pandemics. Of particular interest are the specificity and breadth of antibody reactivity in order to pinpoint immune dominant epitopes that remain immutable in viral variants. Methods: We used profiling with peptides derived from the Spike surface glycoprotein of SARS-CoV-2 to compare the antibody reactivity landscapes between patients and different vaccine cohorts. Initial screening was done with peptide microarrays while detailed results and validation data were obtained using peptide ELISA. Results: Overall, antibody patterns turned out to be individually distinct. However, plasma samples of patients conspicuously recognized epitopes covering the fusion peptide region and the connector domain of Spike S2. Both regions are evolutionarily conserved and are targets of antibodies that were shown to inhibit viral infection. Among vaccinees, we discovered an invariant Spike region (amino acids 657-671) N-terminal to the furin cleavage site that elicited a significantly stronger antibody response in AZD1222- and BNT162b2- compared to NVX-CoV2373-vaccinees. Conclusions: Understanding the exact function of antibodies recognizing amino acid region 657-671 of SARS-CoV-2 Spike glycoprotein and why nucleic acid-based vaccines elicit different responses from protein-based ones will be helpful for future vaccine design.


Subject(s)
COVID-19 , Nucleic Acids , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2 , COVID-19/prevention & control , Epitopes, B-Lymphocyte , Furin/metabolism , Immunity, Humoral , ChAdOx1 nCoV-19 , BNT162 Vaccine , Antibodies, Viral , Peptides
4.
Methods Mol Biol ; 2673: 431-452, 2023.
Article in English | MEDLINE | ID: covidwho-20233939

ABSTRACT

Since the onset of the COVID-19 pandemic, a number of approaches have been adopted by the scientific communities for developing efficient vaccine candidate against SARS-CoV-2. Conventional approaches of developing a vaccine require a long time and a series of trials and errors which indeed limit the feasibility of such approaches for developing a dependable vaccine in an emergency situation like the COVID-19 pandemic. Hitherto, most of the available vaccines have been developed against a particular antigen of SARS-CoV, spike protein in most of the cases, and intriguingly, these vaccines are not effective against all the pathogenic coronaviruses. In this context, immunoinformatics-based reverse vaccinology approaches enable a robust design of efficacious peptide-based vaccines against all the infectious strains of coronaviruses within a short frame of time. In this chapter, we enumerate the methodological trajectory of developing a universal anti-SARS-CoV-2 vaccine, namely, "AbhiSCoVac," through advanced computational biology-based immunoinformatics approach and its in-silico validation using molecular dynamics simulations.


Subject(s)
COVID-19 , Viral Vaccines , Humans , COVID-19/prevention & control , COVID-19 Vaccines , SARS-CoV-2 , Pandemics/prevention & control , Molecular Docking Simulation , Epitopes, B-Lymphocyte , Epitopes, T-Lymphocyte , Vaccines, Subunit , Computational Biology
5.
Front Immunol ; 14: 1166924, 2023.
Article in English | MEDLINE | ID: covidwho-20231128

ABSTRACT

Introduction: The COVID-19 pandemic illustrates the need for serology diagnostics with improved accuracy. While conventional serology based on recognition of entire proteins or subunits thereof has made significant contribution to the antibody assessment space, it often suffers from sub-optimal specificity. Epitope-based, high-precision, serology assays hold potential to capture the high specificity and diversity of the immune system, hence circumventing the cross-reactivity with closely related microbial antigens. Methods: We herein report mapping of linear IgG and IgA antibody epitopes of the SARS-CoV-2 Spike (S) protein in samples from SARS-CoV-2 exposed individuals along with certified SARS-CoV-2 verification plasma samples using peptide arrays. Results: We identified 21 distinct linear epitopes. Importantly, we showed that pre-pandemic serum samples contain IgG antibodies reacting to the majority of protein S epitopes, most likely as a result of prior infection with seasonal coronaviruses. Only 4 of the identified SARS-CoV-2 protein S linear epitopes were specific for SARS-CoV-2 infection. These epitopes are located at positions 278-298 and 550-586, just proximal and distal to the RBD, as well as at position 1134-1156 in the HR2 subdomain and at 1248-1271 in the C-terminal subdomain of protein S. To substantiate the applicability of our findings, we tested three of the high-accuracy protein S epitopes in a Luminex assay, using a certified validation plasma sample set from SARS-CoV-2 infected individuals. The Luminex results were well aligned with the peptide array results, and correlated very well with in-house and commercial immune assays for RBD, S1 and S1/S2 domains of protein S. Conclusion: We present a comprehensive mapping of linear B-cell epitopes of SARS-CoV-2 protein S, that identifies peptides suitable for a precision serology assay devoid of cross-reactivity. These results have implications for development of highly specific serology test for exposure to SARS-CoV-2 and other members of the coronaviridae family, as well as for rapid development of serology tests for future emerging pandemic threats.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Epitopes, B-Lymphocyte , Protein S , Spike Glycoprotein, Coronavirus , Pandemics , Antibodies, Viral , Immunoglobulin G , COVID-19 Testing
6.
Int J Biol Macromol ; 242(Pt 4): 125190, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-20230951

ABSTRACT

Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that, because of its broad host range, poses a potential threat to public health. Here, to identify the neutralizing B-cell epitopes within the S1-CTD protein, we generated three anti-PDCoV monoclonal antibodies (mAbs). Of these, the antibody designated 4E-3 effectively neutralized PDCoV with an IC50 of 3.155 µg/mL. mAb 4E-3 and one other, mAb 2A-12, recognized different linear B-cell epitopes. The minimal fragment recognized by mAb 4E-3 was mapped to 280FYSDPKSAV288 and designated S280-288, the minimal fragment recognized by mAb 2A-12 was mapped to 506TENNRFTT513, and designated S506-513. Subsequently, alanine (A)-scanning mutagenesis indicated that Asp283, Lys285, and Val288 were the critical residues recognized by mAb 4E-3. The S280-288 epitope induces PDCoV specific neutralizing antibodies in mice, demonstrating that it is a neutralizing epitope. Of note, the S280-288 coupled to Keyhole Limpet Hemocyanin (KLH) produces PDCoV neutralizing antibodies in vitro and in vivo, in challenged piglets it potentiates interferon-γ responses and provides partial protection against disease. This is the first report about the PDCoV S protein neutralizing epitope, which will contribute to research of PDCoV-related pathogenic mechanism, vaccine design and antiviral drug development.


Subject(s)
Epitopes, B-Lymphocyte , Immunodominant Epitopes , Animals , Swine , Mice , Spike Glycoprotein, Coronavirus/chemistry , Antibodies, Neutralizing
7.
Int J Biol Macromol ; 242(Pt 2): 124893, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2313040

ABSTRACT

Emerging SARS-CoV-2 variants and subvariants are great concerns for their significant mutations, which are also responsible for vaccine escape. Therefore, the study was undertaken to develop a mutation-proof, next-generation vaccine to protect against all upcoming SARS-CoV-2 variants. We used advanced computational and bioinformatics approaches to develop a multi-epitopic vaccine, especially the AI model for mutation selection and machine learning (ML) strategies for immune simulation. AI enabled and the top-ranked antigenic selection approaches were used to select nine mutations from 835 RBD mutations. We selected twelve common antigenic B cell and T cell epitopes (CTL and HTL) containing the nine RBD mutations and joined them with the adjuvants, PADRE sequence, and suitable linkers. The constructs' binding affinity was confirmed through docking with TLR4/MD2 complex and showed significant binding free energy (-96.67 kcal mol-1) with positive binding affinity. Similarly, the calculated eigenvalue (2.428517e-05) from the NMA of the complex reveals proper molecular motion and superior residues' flexibility. Immune simulation shows that the candidate can induce a robust immune response. The designed mutation-proof, multi-epitopic vaccine could be a remarkable candidate for upcoming SARS-CoV-2 variants and subvariants. The study method might guide researchers in developing AI-ML and immunoinformatics-based vaccines for infectious disease.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Molecular Docking Simulation , Epitopes, B-Lymphocyte , Vaccines, Subunit , Artificial Intelligence
8.
Biotechnol Lett ; 45(7): 779-797, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2317808

ABSTRACT

BACKGROUND: COVID-19 has proved to be a fatal disease of the year 2020, due to which thousands of people globally have lost their lives, and still, the infection cases are at a high rate. Experimental studies suggested that SARS-CoV-2 interacts with various microorganisms, and this coinfection is accountable for the augmentation of infection severity. METHODS AND RESULTS: In this study, we have designed a multi-pathogen vaccine by involving the immunogenic proteins from S. pneumonia, H. influenza, and M. tuberculosis, as they are dominantly associated with SARS-CoV-2. A total of 8 antigenic protein sequences were selected to predict B-cell, HTL, and CTL epitopes restricted to the most prevalent HLA alleles. The selected epitopes were antigenic, non-allergenic, and non-toxic and were linked with adjuvant and linkers to make the vaccine protein more immunogenic, stable, and flexible. The tertiary structure, Ramachandran plot, and discontinuous B-cell epitopes were predicted. Docking and MD simulation study has shown efficient binding of the chimeric vaccine with the TLR4 receptor. CONCLUSION: The in silico immune simulation analysis has shown a high level of cytokines and IgG after a three-dose injection. Hence, this strategy could be a better way to decrease the disease's severity and could be used as a weapon to prevent this pandemic.


Subject(s)
COVID-19 , Coinfection , Viral Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , COVID-19 Vaccines , Epitopes, T-Lymphocyte/genetics , Molecular Docking Simulation , Vaccines, Subunit , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , Computational Biology/methods
9.
PLoS One ; 18(4): e0284264, 2023.
Article in English | MEDLINE | ID: covidwho-2299666

ABSTRACT

Rational design of new vaccines against pulmonary tuberculosis is imperative. Early secreted antigens (Esx) G and H are involved in metal uptake, drug resistance, and immune response evasion. These characteristics make it an ideal target for rational vaccine development. The aim of this study is to show the rational design of epitope-based peptide vaccines by using bioinformatics and structural vaccinology tools. A total of 4.15 µs of Molecular Dynamics simulations were carried out to describe the behavior in solution of heterodimer, single epitopes, and epitopes loaded into MHC-II complexes. In order to predict T and B cell epitopes for antigenic activation, bioinformatic tools were used. Hence, we propose three epitopes with the potential to design pulmonary tuberculosis vaccines. The possible use of the proposed epitopes includes subunit vaccines, as a booster in BCG vaccination to improve its immune response, as well as the generation of antibodies that interfere with the Mycobacterium tuberculosis homeostasis, affecting its survival.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/prevention & control , Metals , Epitopes, B-Lymphocyte , Vaccine Development , Epitopes, T-Lymphocyte , Computational Biology , Vaccines, Subunit , Molecular Docking Simulation
10.
Viruses ; 15(4)2023 04 06.
Article in English | MEDLINE | ID: covidwho-2302639

ABSTRACT

The Nucleocapsid (N) protein is highlighted as the main target for COVID-19 diagnosis by antigen detection due to its abundance in circulation early during infection. However, the effects of the described mutations in the N protein epitopes and the efficacy of antigen testing across SARS-CoV-2 variants remain controversial and poorly understood. Here, we used immunoinformatics to identify five epitopes in the SARS-CoV-2 N protein (N(34-48), N(89-104), N(185-197), N(277-287), and N(378-390)) and validate their reactivity against samples from COVID-19 convalescent patients. All identified epitopes are fully conserved in the main SARS-CoV-2 variants and highly conserved with SARS-CoV. Moreover, the epitopes N(185-197) and N(277-287) are highly conserved with MERS-CoV, while the epitopes N(34-48), N(89-104), N(277-287), and N(378-390) are lowly conserved with common cold coronaviruses (229E, NL63, OC43, HKU1). These data are in accordance with the observed conservation of amino acids recognized by the antibodies 7R98, 7N0R, and 7CR5, which are conserved in the SARS-CoV-2 variants, SARS-CoV and MERS-CoV but lowly conserved in common cold coronaviruses. Therefore, we support the antigen tests as a scalable solution for the population-level diagnosis of SARS-CoV-2, but we highlight the need to verify the cross-reactivity of these tests against the common cold coronaviruses.


Subject(s)
COVID-19 , Common Cold , Middle East Respiratory Syndrome Coronavirus , Humans , SARS-CoV-2/genetics , Epitopes, B-Lymphocyte/genetics , COVID-19 Testing , COVID-19/diagnosis , Nucleocapsid , Spike Glycoprotein, Coronavirus/genetics
11.
Angew Chem Int Ed Engl ; 62(21): e202301147, 2023 05 15.
Article in English | MEDLINE | ID: covidwho-2281045

ABSTRACT

Peptide vaccines have advantages in easy fabrication and high safety, but their effectiveness is hampered by the poor immunogenicity of the epitopes themselves. Herein, we constructed a series of framework nucleic acids (FNAs) with regulated rigidity and size to precisely organize epitopes in order to reveal the influence of epitope spacing and carrier rigidity on the efficiency of peptide vaccines. We found that assembling epitopes on rigid tetrahedral FNAs (tFNAs) with the appropriate size could efficiently enhance their immunogenicity. Further, by integrating epitopes from SARS-CoV-2 on preferred tFNAs, we constructed a COVID-19 peptide vaccine which could induce high titers of IgG against the receptor binding domain (RBD) of SARS-CoV-2 spike protein and increase the ratio of memory B and T cells in mice. Considering the good biocompatibility of tFNAs, our research provides a new idea for developing efficient peptide vaccines against viruses and possibly other diseases.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2/metabolism , Epitopes, T-Lymphocyte/chemistry , Epitopes, T-Lymphocyte/metabolism , Epitopes, B-Lymphocyte/chemistry , Peptides , Vaccines, Subunit
12.
BMC Bioinformatics ; 24(1): 67, 2023 Feb 24.
Article in English | MEDLINE | ID: covidwho-2280689

ABSTRACT

BACKGROUND: Streptococcus pneumoniae (Pneumococcus) has remained a leading cause of fatal infections such as pneumonia, meningitis, and sepsis. Moreover, this pathogen plays a major role in bacterial co-infection in patients with life-threatening respiratory virus diseases such as influenza and COVID-19. High morbidity and mortality in over one million cases, especially in very young children and the elderly, are the main motivations for pneumococcal vaccine development. Due to the limitations of the currently marketed polysaccharide-based vaccines, non-serotype-specific protein-based vaccines have received wide research interest in recent years. One step further is to identify high antigenic regions within multiple highly-conserved proteins in order to develop peptide vaccines that can affect various stages of pneumococcal infection, providing broader serotype coverage and more effective protection. In this study, immunoinformatics tools were used to design an effective multi-epitope vaccine in order to elicit neutralizing antibodies against multiple strains of pneumococcus. RESULTS: The B- and T-cell epitopes from highly protective antigens PspA (clades 1-5) and PhtD were predicted and immunodominant peptides were linked to each other with proper linkers. The domain 4 of Ply, as a potential TLR4 agonist adjuvant candidate, was attached to the end of the construct to enhance the immunogenicity of the epitope vaccine. The evaluation of the physicochemical and immunological properties showed that the final construct was stable, soluble, antigenic, and non-allergenic. Furthermore, the protein was found to be acidic and hydrophilic in nature. The protein 3D-structure was built and refined, and the Ramachandran plot, ProSA-web, ERRAT, and Verify3D validated the quality of the final model. Molecular docking analysis showed that the designed construct via Ply domain 4 had a strong interaction with TLR4. The structural stability of the docked complex was confirmed by molecular dynamics. Finally, codon optimization was performed for gene expression in E. coli, followed by in silico cloning in the pET28a(+) vector. CONCLUSION: The computational analysis of the construct showed acceptable results, however, the suggested vaccine needs to be experimentally verified in laboratory to ensure its safety and immunogenicity.


Subject(s)
COVID-19 , Streptococcus pneumoniae , Child , Humans , Child, Preschool , Aged , Molecular Docking Simulation , Escherichia coli , Toll-Like Receptor 4 , Epitopes, T-Lymphocyte/chemistry , Vaccines, Subunit/chemistry , Vaccines, Subunit/genetics , Epitopes, B-Lymphocyte , Computational Biology/methods
13.
Nature ; 617(7961): 592-598, 2023 May.
Article in English | MEDLINE | ID: covidwho-2249288

ABSTRACT

The primary two-dose SARS-CoV-2 mRNA vaccine series are strongly immunogenic in humans, but the emergence of highly infectious variants necessitated additional doses and the development of vaccines aimed at the new variants1-4. SARS-CoV-2 booster immunizations in humans primarily recruit pre-existing memory B cells5-9. However, it remains unclear whether the additional doses induce germinal centre reactions whereby re-engaged B cells can further mature, and whether variant-derived vaccines can elicit responses to variant-specific epitopes. Here we show that boosting with an mRNA vaccine against the original monovalent SARS-CoV-2 mRNA vaccine or the bivalent B.1.351 and B.1.617.2 (Beta/Delta) mRNA vaccine induced robust spike-specific germinal centre B cell responses in humans. The germinal centre response persisted for at least eight weeks, leading to significantly more mutated antigen-specific bone marrow plasma cell and memory B cell compartments. Spike-binding monoclonal antibodies derived from memory B cells isolated from individuals boosted with either the original SARS-CoV-2 spike protein, bivalent Beta/Delta vaccine or a monovalent Omicron BA.1-based vaccine predominantly recognized the original SARS-CoV-2 spike protein. Nonetheless, using a more targeted sorting approach, we isolated monoclonal antibodies that recognized the BA.1 spike protein but not the original SARS-CoV-2 spike protein from individuals who received the mRNA-1273.529 booster; these antibodies were less mutated and recognized novel epitopes within the spike protein, suggesting that they originated from naive B cells. Thus, SARS-CoV-2 booster immunizations in humans induce robust germinal centre B cell responses and can generate de novo B cell responses targeting variant-specific epitopes.


Subject(s)
B-Lymphocytes , COVID-19 Vaccines , COVID-19 , Germinal Center , Immunization, Secondary , Humans , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Germinal Center/cytology , Germinal Center/immunology , Plasma Cells/cytology , Plasma Cells/immunology , Memory B Cells/cytology , Memory B Cells/immunology , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/immunology
14.
Front Immunol ; 13: 1001430, 2022.
Article in English | MEDLINE | ID: covidwho-2231827

ABSTRACT

SARS-COV-2 is a virulent respiratory virus, first identified in China (Wuhan) at the end of 2019. Scientists and researchers are trying to find any possible solution to this deadly viral disease. Different drug source agents have been identified, including western medicine, natural products, and traditional Chinese medicine. They have the potential to counteract COVID-19. This virus immediately affects the liver and causes a decrease in oxygen levels. In this study, multiple vacciome approaches were employed for designing a multi-epitope subunit vaccine for battling against SARS-COV-2. Vaccine designing, immunogenicity, allergenic, and physico-chemical assessment were performed by using the vacciome approach. The vaccine design is likely to be antigenic and produce potent interactions with ACE2 and NSP3 receptors. The developed vaccine has also been given to in-silico cloning models and immune response predictions. A total number of 12 CTL and 12 HTL antigenic epitopes were predicted from three selected covid-19 virulent proteins (spike protein, nucleocapsid protein, and membrane proteins, respectively) based on C-terminal cleavage and MHC binding scores. These predicted epitopes were amalgamated by AYY and GPGPG linkers, and a ß-defensins adjuvant was inserted into the N-terminus of this vaccine. This analysis shows that the recommended vaccine can produce immune responses against SARS-COV-2. Designing and developing of the mentioned vaccine will require further experimental validation.


Subject(s)
COVID-19 , Cancer Vaccines , Viral Vaccines , Humans , COVID-19/prevention & control , SARS-CoV-2 , Epitopes, T-Lymphocyte , Epitopes, B-Lymphocyte , Molecular Docking Simulation , Vaccines, Subunit , Peptides , Vaccination
15.
Eur J Immunol ; 53(4): e2250206, 2023 04.
Article in English | MEDLINE | ID: covidwho-2208972

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) still poses a challenge for biomedicine and public health. To advance the development of effective diagnostic, prognostic, and preventive interventions, our study focused on high-throughput antibody binding epitope mapping of the SARS-CoV-2 spike RBD protein by IgA, IgM and IgG antibodies in saliva and sera of different cohorts from healthy uninfected individuals to SARS-CoV-2-infected unvaccinated and vaccinated asymptomatic, recovered, nonsevere, and severe patients. Identified candidate diagnostic (455-LFRKSNLKPFERD-467), prognostic (395-VYADSFVIRGDEV-407-C-KLH, 332-ITNLCPFGEV-342-C-KLH, 352-AWNRKRI-358-C-KLH, 524-VCGPKKSTNLVKN-536-KLH), and protective (MKLLE-487-NCYFPLQSYGFQPTNGVG-504-GGGGS-446-GGNYNYLYRLFRKSNLKPFERD-467) epitopes were validated with sera from prevaccine and postvaccine cohorts. The results identified neutralizing epitopes and support that antibody recognition of linear B-cell epitopes in RBD protein is associated with antibody isotype and disease symptomatology. The findings in asymptomatic individuals suggest a role for anti-RBD antibodies in the protective response against SARS-CoV-2. The possibility of translating results into diagnostic interventions for the early diagnosis of asymptomatic individuals and prognosis of disease severity provides new tools for COVID-19 surveillance and evaluation of risks in hospitalized patients. These results, together with other approaches, may contribute to the development of new vaccines for the control of COVID-19 and other coronavirus-related diseases using a quantum vaccinomics approach through the combination of protective epitopes.


Subject(s)
COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/diagnosis , Epitope Mapping , Epitopes, B-Lymphocyte , SARS-CoV-2
16.
Biotechnol Appl Biochem ; 70(3): 1189-1205, 2023 Jun.
Article in English | MEDLINE | ID: covidwho-2172675

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown rapid global spread and has resulted in a significant death toll worldwide. In this study, we aimed to design a multi-epitope vaccine against SARS-CoV-2 based on structural proteins S, M, N, and E. We identified B- and T-cell epitopes and then the antigenicity, toxicity, allergenicity, and similarity of predicted epitopes were analyzed. T-cell epitopes were docked with corresponding HLA alleles. Consequently, the selected T- and B-cell epitopes were included in the final construct. All selected epitopes were connected with different linkers and flagellin and pan-HLA DR binding epitopes (PADRE) as an adjuvant were used in the vaccine construct. Furthermore, molecular docking was used to evaluate the complex between the final vaccine construct and two alleles, HLA-A*02:01 and HLA-DRB1*01:01. Finally, codons were optimized for in silico cloning into pET28a(+) vector using SnapGene. The final vaccine construct comprised 11 CTL, HTL, and B-cell epitopes corresponding to 394 amino acid residues. In silico evaluation showed that the designed vaccine might potentially promote an immune response. Further in vivo preclinical and clinical testing is required to determine the safety and efficacy of the designed vaccine.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Immunodominant Epitopes/genetics , Epitopes, T-Lymphocyte/genetics , Epitopes, T-Lymphocyte/chemistry , Epitopes, B-Lymphocyte/genetics , Epitopes, B-Lymphocyte/chemistry , COVID-19 Vaccines/genetics , Molecular Docking Simulation , Computational Biology/methods
17.
Int Immunopharmacol ; 115: 109728, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2179733

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) severely threaten human health; however, currently, no vaccine can prevent a co-infection with both viruses. METHODS: Five antigens were selected to predict dominant T and B cell epitopes screened for immunogenicity, antigenicity, toxicity, and sensitization. After screening, all antigens joined in the construction of a novel multiepitope vaccine. The physicochemical and immunological characteristics, and secondary and tertiary structures of the vaccine were predicted and analyzed using bio- and immunoinformatics. Finally, codon optimization and cloning in-silico were performed. RESULTS: A new multiepitope vaccine, named S7M8, was constructed based on four helper T lymphocyte (HTL) epitopes, six cytotoxic T lymphocyte (CTL) epitopes, five B cell epitopes, as well as Toll-like receptor (TLR) agonists. The antigenicity and immunogenicity scores of the S7M8 vaccine were 0.907374 and 0.6552, respectively. The S7M8 vaccine was comprised of 26.96% α-helices, the optimized Z-value of the tertiary structure was -5.92, and the favored area after majorization in the Ramachandran plot was 84.54%. Molecular docking showed that the S7M8 vaccine could tightly bind to TLR2 (-1100.6 kcal/mol) and TLR4 (-950.3 kcal/mol). In addition, the immune stimulation prediction indicated that the S7M8 vaccine could activate T and B lymphocytes to produce high levels of Th1 cytokines and antibodies. CONCLUSION: S7M8 is a promising biomarker with good antigenicity, immunogenicity, non-toxicity, and non-sensitization. The S7M8 vaccine can trigger significantly high levels of Th1 cytokines and antibodies and may be a potentially powerful tool in preventing SARS-CoV-2 and MPXV.


Subject(s)
COVID-19 , Coinfection , Humans , SARS-CoV-2 , COVID-19/prevention & control , Epitopes, B-Lymphocyte , Monkeypox virus , Molecular Docking Simulation , Vaccinology , Epitopes, T-Lymphocyte , Vaccines, Subunit , Cytokines , Computational Biology
18.
Brief Bioinform ; 24(1)2023 01 19.
Article in English | MEDLINE | ID: covidwho-2188253

ABSTRACT

Accurate in silico prediction of conformational B-cell epitopes would lead to major improvements in disease diagnostics, drug design and vaccine development. A variety of computational methods, mainly based on machine learning approaches, have been developed in the last decades to tackle this challenging problem. Here, we rigorously benchmarked nine state-of-the-art conformational B-cell epitope prediction webservers, including generic and antibody-specific methods, on a dataset of over 250 antibody-antigen structures. The results of our assessment and statistical analyses show that all the methods achieve very low performances, and some do not perform better than randomly generated patches of surface residues. In addition, we also found that commonly used consensus strategies that combine the results from multiple webservers are at best only marginally better than random. Finally, we applied all the predictors to the SARS-CoV-2 spike protein as an independent case study, and showed that they perform poorly in general, which largely recapitulates our benchmarking conclusions. We hope that these results will lead to greater caution when using these tools until the biases and issues that limit current methods have been addressed, promote the use of state-of-the-art evaluation methodologies in future publications and suggest new strategies to improve the performance of conformational B-cell epitope prediction methods.


Subject(s)
Epitopes, B-Lymphocyte , Spike Glycoprotein, Coronavirus , Humans , Computational Biology/methods , Epitopes, B-Lymphocyte/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
19.
Viral Immunol ; 36(2): 110-121, 2023 03.
Article in English | MEDLINE | ID: covidwho-2188182

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. There are four structural proteins of the virus: spike, envelope, membrane, and nucleocapsid proteins. Various vaccines were designed and are effectively being used against the spike protein of the virus. However, several vaccine-related complications have been reported worldwide. Assuming that the structural integrity of the whole protein might be contributing to these complications, this study was performed to design epitopes using the S2 domain of the spike protein, which could trigger a strong immune response. We have also predicted antigenic and allergenic properties of the selected epitopes. A total of 49 B cell epitopes passing antigenicity and other assessment filters were found using three methods. Among them, RDLICAQ had the highest antigenicity score (1.1443). However, only one cytotoxic T lymphocyte epitope, RSFIEDLLF, passed the essential filters with an antigenicity score of 0.5782 to show an appropriate immune response for T cells, while among 21 helper T cell lymphocyte epitopes that were filtered, FAMQMAYRFNGIGVT showed the highest (1.3688) antigenicity score. Conservation analysis revealed that the S2 domain is significantly conserved, thus making it an ideal candidate for vaccine development. We have also designed a vaccine construct based on the best suiting components found during the whole study. This construct and S2 domain solely can be future subjects of interest or might be included in a subunit cocktail formulation for attaining unabridged immunogenicity.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , COVID-19/prevention & control , Spike Glycoprotein, Coronavirus/chemistry , Epitopes, B-Lymphocyte/chemistry , Epitopes, T-Lymphocyte , Molecular Docking Simulation
20.
Appl Microbiol Biotechnol ; 107(2-3): 651-661, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2174051

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that caused diarrhea and/or vomiting in neonatal piglets worldwide. Coronaviruses nucleocapsid (N) protein is the most conserved structural protein for viral replication and possesses good antigenicity. In this study, three monoclonal antibodies (mAbs), 3B4, 4D3, and 4E3 identified as subclass IgG2aκ were prepared using the lymphocytic hybridoma technology against PDCoV N protein. Furthermore, the B-cell epitope recognized by mAb 4D3 was mapped by dozens of overlapping truncated recombinant proteins based on the western blotting. The polypeptide 28QFRGNGVPLNSAIKPVE44 (EP-4D3) in the N-terminal of PDCoV N protein was identified as the minimal linear epitope for binding mAb 4D3. And the EP-4D3 epitope's amino acid sequence homology study revealed that PDCoV strains are substantially conserved, with the exception of the Alanine43 substitution Valine43 in the China lineage, the Early China lineage, and the Thailand, Vietnam, and Laos lineage. The epitope sequences shared high similarity (94.1%) with porcine coronavirus HKU15-155 (PorCoV HKU15), Asian leopard cats coronavirus (ALCCoV), sparrow coronavirus HKU17 (SpCoV HKU17), and sparrow deltacoronavirus. In contrast, the epitope sequences shared a very low homology (11.8 to 29.4%) with other porcine CoVs (PEDV, TGEV, PRCV, SADS-CoV, PHEV). Overall, the study will enrich the biological function of PDCoV N protein and provide foundational data for further development of diagnostic applications. KEY POINTS: • Three monoclonal antibodies against PDCoV N protein were prepared. • Discovery of a novel B-cell liner epitope (28QFRGNGVPLNSAIKPVE44) of PDCoV N protein. • The epitope EP-4D3 was conserved among PDCoV strains.


Subject(s)
Coronavirus Infections , Coronavirus , Swine Diseases , Swine , Animals , Deltacoronavirus/genetics , Epitopes, B-Lymphocyte/genetics , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/metabolism , Coronavirus/genetics , Coronavirus Infections/veterinary , Antibodies, Monoclonal
SELECTION OF CITATIONS
SEARCH DETAIL